Урок синус, косинус, тангенс угла

План-конспект урока
Тема: «Синус, косинус и тангенс острого угла прямоугольного треугольника»

Цели урока:
образовательные – ввести понятие синус, косинус, тангенс острого угла в прямоугольном треугольнике, исследовать зависимости и соотношения между этими величинами;
развивающие – формирование понятия о синусе, косинусе, тангенсе как функциях от угла, области определения тригонометрических функций, развитие логического мышления, развитие правильной математической речи;
воспитательные – развитие навыка самостоятельной работы, культуры поведения, аккуратности в ведении записей.

Ход урока
1. Организационный момент
«Образование – это не количество прослушанных уроков, а количество понятых. Так что, если хотите идти вперед, то поспешайте медленно и будьте внимательны»
2. Мотивация урока.
Один мудрец сказал: « Высшее проявление духа – это разум. Высшее проявление разума – это геометрия. Клетка геометрии – это треугольник. Он так же неисчерпаем, как и Вселенная. Окружность – душа геометрии. Познайте окружность, и вы не только познаете душу геометрии, но возвысите свою душу».
Мы вместе с вами попробуем провести небольшое исследование. Давайте делиться своими идеями, которые придут вам в голову, и не бойтесь ошибиться, любая мысль может дать нам новое направление поиска. Пусть наши достижения и не покажутся кому-то крупными, но ведь это будут наши собственные достижения!
3. Актуализация опорных знаний.
Какие могут быть углы?
Что такое треугольники?
Основные элементы, определяющие треугольник?
Какие бывают треугольники в зависимости от сторон?
Какие бывают треугольники в зависимости от углов?
Что такое катет?
Что такое гипотенуза?
Как называются стороны прямоугольного треугольника?
Какие соотношения между сторонами и углами этого треугольника вы знаете?
Зачем надо знать соотношения между сторонами и углами?
Какие задачи из жизни могут привести к необходимости вычислять неизвестные стороны в треугольнике?

Термин «гипотенуза» происходит от греческого слова «ипонейноуза», обозначающее «тянущаяся над чем-либо», «стягивающая». Слово берет начало от образа древнегреческих арф, на которых струны натягиваются на концах двух взаимно-перпендикулярных подставок. Термин «катет» происходит от греческого слова «катетос», которое означает начало «отвес», «перпендикуляр».
Евклид говорил: «Катеты – это стороны, заключающие прямой угол».
В Древней Греции уже был известен способ построения прямоугольного треугольника на местности. Для этого использовали веревку, на которой были завязаны 13 узелков, на одинаковом расстоянии друг от друга. При строительстве пирамид в Египте именно так изготавливали прямоугольные треугольники. Наверно поэтому прямоугольный треугольник со сторонами 3,4,5 и назвали египетским треугольником.
4. Изучение нового материала.
В древности люди следили за светилами и по этим наблюдениям вели календарь, рассчитывали сроки сева, время разлива рек; корабли на море, караваны на суше ориентировались в пути по звездам. Все это привело к потребности научиться вычислять стороны в треугольнике, две вершины которого находятся на земле, а третья представляется точкой на звездном небе. Исходя из этой потребности и возникла наука – тригонометрия – наука, изучающая связи между сторонами в треугольнике.
Как вы думаете, достаточно ли уже известных нам соотношений для решения таких задач?
Цель сегодняшнего урока – исследовать новые связи и зависимости, вывести соотношения, применяя которые на следующих уроках геометрии, вы сможете такие задачи решать.
Давайте почувствуем себя в роли научных работников и вслед за гениями древности Фалесом, Евклидом, Пифагором пройдем путь поиска истины.
Для этого нам нужна теоретическая база.

Выделите красным цветом угол А и катет ВС.
Выделите зеленым цветом катет АС.
.Вычислим, какую часть составляет противолежащий катет для острого угла А к его гипотенузе, для этого составим отношение противолежащего катета к гипотенузе:

Это отношение носит особое название – такое, что каждый человек в каждой точке планеты понимает, что речь идет о числе, представляющем отношение противолежащего катета острого угла к гипотенузе. Это слово синус. Запишите его. Так как слово синус без названия угла теряет всякий смысл, то математическая запись такова: 13 QUOTE 1415
Теперь составьте отношение прилежащего катета к гипотенузе для острого угла А:

Это отношение имеет название косинус. Его математическая запись:13 QUOTE 1415

Рассмотрим еще одно отношение для острого угла А: отношение противолежащего катета к прилежащему катету:

Это отношение носит название тангенс. Его математическая запись: tg13 QUOTE 1415

5. Закрепление нового материала.
Давайте закрепим наши промежуточные открытия.
Синус – это
Косинус – это
Тангенс – это ..



sin A =
sin О =
sin A1 =

cos A =
cos О =
cos A1 =

tg A =
tg О =
tg A1 =


Использование полученных знаний для решения практической задачи:
«С башни маяка высотой 70 м виден корабль под углом 3( к горизонту. Каково
расстояние от маяка до корабля?»





Задача решается фронтально. В ходе обсуждения делаем чертеж и необходимые записи на доске и в тетрадях.
При решении задачи используются таблицы Брадиса.

6. Физминутка для глаз.
-Не поворачивая головы, обведите взглядом стену класса по периметру по часовой стрелке, классную доску по периметру против часовой стрелки, треугольник, изображенный на стенде по часовой стрелке и равный ему треугольник против часовой стрелки. Поверните голову налево и посмотрите на линию горизонта, а теперь на кончик своего носа. Закройте глаза, сосчитайте до 5, откройте глаза и
Мы ладонь к глазам приставим, Ноги крепкие расставим. Поворачиваясь вправо, Оглядимся величаво. И налево надо тоже Поглядеть из под ладошек. И – направо! И еще Через левое плечо!
А теперь продолжим работу.

7. Самостоятельная работа учащихся.
1. В треугольнике  угол  равен , . Найдите 
2. В треугольнике  угол  равен , , . Найдите 
[ Cкачайте файл, чтобы посмотреть ссылку ]
8.Итоги урока. Рефлексия.
Что вы узнали нового? На уроке:
вы рассматривали
вы анализировали
вы получили
вы сделали вывод
вы пополнили словарный запас следующими терминами
Мировая наука начиналась с геометрии. Человек не может по настоящему развиваться культурно и духовно, если он не изучал в школе геометрию. Геометрия возникла не только из практических, но и духовных потребностей человека.
Вот как поэтично объяснилась в любви к геометрии
Геометрию люблю
Геометрию учу, потому что я люблю
Геометрия нужна, без нее нам никуда.
Синус, косинус, окружность – все здесь важно,
Все здесь нужно,
Только надо очень четко все учить и познавать,
Делать вовремя заданья и контрольные решать.

?

70м

В

С

А



Рисунок 13Рисунок 3Рисунок 6Рисунок 10Рисунок 2Рисунок 10Рисунок 11Рисунок 3Рисунок 11Рисунок 2Рисунок 3Рисунок 5Рисунок 8Рисунок 11Рисунок 12Рисунок 1415

Приложенные файлы


Добавить комментарий