Реферат на тему Моделирование реальных процессов в пакете расширений «fractals» системы Maxima


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО
ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОРДОВСКИЙ
ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ
ИМЕНИ М. Е. ЕВСЕВЬЕВА»
Факультет физико-математический
Кафедра информатики и вычислительной техники
Реферат на тему:
Моделирование реальных процессов в пакете расширений «fractals» системы MaximaВыполнила: Захаркина Р.А.
Студентка 2 курса группы МДМ -215
Проверила: кан. физ-мат. наук, доцент
Кормилицына Т.В
Саранск 2017Содержание:
Введение……………………….…………………………………………….3
Определение фрактала……………….………….………………………….4
Обзор пакета fractals…………………….…….…………………………….5
Заключение…………………………….……….…………………………..10
Список используемой литературы……………….……….…….…………11

Введение
Maxima произошла от системы  HYPERLINK "https://ru.wikipedia.org/wiki/Macsyma" \o "Macsyma" Macsyma, разрабатывавшейся в MIT с 1968 по 1982 годы в рамках проекта Project MAC, финансируемого Министерством энергетики США (DOE) и другими государственными организациями. Профессор Уильям Шелтер из Техасского университета в Остине поддерживал один из вариантов системы, известный как DOE Macsyma, с 1982 года до самой своей смерти в 2001 году.
В 1998 году Шелтер получил от Министерства энергетики разрешение опубликовать исходный код DOE Macsyma под лицензией GPL, и в 2000 году он создал проект на SourceForge.net для поддержания и дальнейшего развития DOE Macsyma под именем Maxima.
Maxima — система для работы с символьными и численными выражениями, включающая дифференцирование, интегрирование, разложение в ряд, преобразование Лапласа, обыкновенные дифференциальные уравнения, системы линейных уравнений, многочлены, множества, списки, векторы, матрицы и тензоры.
Maxima имеет широчайший набор средств для проведения аналитических вычислений, численных вычислений и построения графиков. По набору возможностей система близка к таким коммерческим системам, как  HYPERLINK "https://ru.wikipedia.org/wiki/Maple" \o "Maple" Maple и  HYPERLINK "https://ru.wikipedia.org/wiki/Mathematica" \o "Mathematica" Mathematica. В то же время она обладает высочайшей степенью переносимости: может работать на всех основных современных операционных системах на компьютерах.

Определение фрактала
Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы».
Фрактал - это геометрическая фигура, состоящая из частей и которая может быть поделена на части, каждая из которых будет представлять уменьшенную копию целого.
Природные объекты, обладающие фрактальными свойствами
В живой природе:
Кораллы
Морские звезды и ежи
Морские раковины
Цветы и растения (брокколи, капуста)
Кроны деревьев и листья растений
Плоды (ананас)
Кровеносная система и бронхи людей и животных
Свойства фракталов:
Обладает сложной структурой при любом увеличении;
Является (приближенно) самоподобной;
Обладает дробной метрической размерностью, которая больше топологической;
Может быть построена рекурсивными процедурами

Обзор пакета fractals
C помощью пакета fractals автора Jos’e Ram’ırez Labrador можно строить известные фракталы:
. треугольник Серпинского, фракталы «Дерево», «Папоротник»;
. снежинки Коха;
. отображения Пеано: кривые Серпинского и Гильберта.
Данный пакет обладает ограниченными возможностями. Однако рекомендуется изучить его исходный код, находящийся в файле «fractals.mac». Параметры всех команд этого пакета, приведённых ниже, можно изменить непосредственно в тексте этого пакета или скопировать соответствующий кусок кода в свою рабочую область и изменить его.
Рассмотрим функции этого пакета.
Sierpinskiale (𝑛) — возвращает массив из координат 𝑛 − 1 случайной точки, принадлежащей треугольнику Серпинского, получающемуся рандомизированным Алгоритмом. Функции этой СИФ:

Treefale (𝑛) — возвращает массив из координат 𝑛 − 1 случайной точки, принадлежащей древовидному аттрактору СИФ, получающемуся рандомизированным алгоритмом. Функции этой СИФ:

Fernfale (𝑛) — возвращает массив из координат 𝑛 − 1 случайной точки, принадлежащей древовидному аттрактору СИФ, получающемуся рандомизированным алгоритмом (здесь вероятности выбора функции зависят от коэффициентов сжатия). Функции этой СИФ:

Mandelbrot_set (𝑥, 𝑦) — возвращает число 𝑛 ≤ 29 итераций, для которого |fx+yin(0)| ≥ 100, либо число 30, если за 29 итераций орбита точки 0 осталась внутри круга |𝑧| < 100. Напомним, множеству Мандельброта ℳ принадлежат точки 𝑐 = 𝑥 + 𝑦i, для которых орбита нуля ограничена. Эту функцию можно использовать для раскрашивания областей по скоростям убегания точек, например, так:

Julia_set (𝑥, 𝑦) — возвращает число 𝑛 ≤ 29 итераций, для которого |fc(n)(𝑥+𝑦i)| ≥100, либо число 30, если за 29 итераций орбита точки 𝑥 + 𝑦i осталась внутри круга |𝑧| <100. Здесь число 𝑐 по умолчанию задается переменной julia_parameter:%i. Напомним, заполняющему множеству Жюлиа принадлежат точки 𝑥+𝑦i, орбита которых ограничена. Применять эту команду можно так:

Julia_sin (𝑥, 𝑦) — то же, что и предыдущая команда, только для функции (𝑧) =𝑐sin 𝑧. Автор рекомендует параметр julia_parameter:1+0.1*%i$.
Snowmap (𝑣𝑒𝑟𝑡, 𝑖𝑡𝑒𝑟) — возвращает массив вершин снежинки Коха после 𝑖𝑡𝑒𝑟 итераций, построенной на сторонах ломаной линий, заданной массивом вершин 𝑣𝑒𝑟𝑡 в виде комплексных чисел. Если первая и последняя вершины совпадают, то ломаная линия замкнута. Результирующее множество расположено слева от ломаной линии, считая в направлении от начала к ее концу. Для построения используется рекурсивный алгоритм.
Hilbertmap (𝑖𝑡𝑒𝑟) — возвращает массив вершин непрерывной кривой Гильберта, плотно заполняющей плоскую область, после 𝑖𝑡𝑒𝑟 итераций.

Sierpinskimap (𝑖𝑡𝑒𝑟) — возвращает массив вершин непрерывной кривой Серпинского, плотно заполняющей плоскую область, после 𝑖𝑡𝑒𝑟 итераций.

Примеры:
14859028765500Треугольник Серпинского (рис.1-2.)

Рисунок SEQ Рисунок \* ARABIC 1- Треугольник Серпинского.

Рисунок SEQ Рисунок \* ARABIC 2-Треугольник Серпиского, 3D модель из бумаги.
Снежинка Коха (рис.3-4.)
-38104635500

Рисунок SEQ Рисунок \* ARABIC 3-Построение снежинки Коха.

Рисунок SEQ Рисунок \* ARABIC 4- крепость Буртанж построенная по принципу Снежинки Коха.
Заключение
Наука о фракталах очень молода, потому что они стали появляться с развитием компьютерных технологий. Поэтому многое еще не изучено и многое еще предстоит открыть. Основная причина   применения фракталов в различных науках заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Фракталы можно применять не только в точных науках, но и практически во всем, что нас окружает: одежда, элемент декора интерьера, дизайн открыток, штор и многого другого. Кроме большой функциональности, возможности применения фракталов в самых различных сферах жизни, это очень яркие, сочные, изумительные по своей красоте изображения, которые доставляют огромное эстетическое удовольствие, позволяют насладиться ими. Создавать свои собственные фракталы может каждый, используя доступные графические программы. От самого процесса создания совершенно для нас нового и одновременно невероятно красивого, порой фантастического, получаешь массу удовольствия. Фракталы очень разнообразны, как и их применение. Изучая фрактальные модели для практического применения, каждый сможет выбрать подходящее для себя направление.
Список использованных источников
Википедия [Электронный ресурс]: свободная энциклопедия, которую может редактировать каждый. Издается с 15 января 2001 года. - Режим доступа: https://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0— Загл. с экрана.
Картинки Google [Электронный ресурс]: бесплатные картинки по разным темам. - Режим доступа: www.google.com/imghp?hl=ru — Загл. с экрана.
КомпьютерПресс [Электронный ресурс]: первый в России ежемесячный компьютерный журнал «КомпьютерПресс» издавался с 1989 по 2013 год. - Режим доступа: http://compress.ru/article.aspx?id=16152 .
Трошин, П. И. Моделирование фракталов в среде Maxima, часть 1 – Казань, 2012 г.
Pers.narod [Электронный ресурс]: бесплатный обучающий форум. - Режим доступа: http://pers.narod.ru/study/mathcad/01.html .

Приложенные файлы


Добавить комментарий