«Реферат на тему «Алгебраические фракталы»


Реферат на тему:
«Алгебраические фракталы»
Содержание
Введение
Понятие фрактала.........................................................................................4
История появления фракталов………………………………………........6
Алгебраические фракталы………………..……………………………….8
Множество Мальдеброда……………………………………………...9
Множество Жюлиа……………………………………………………11
Бассейны (фракталы) Ньютона………………………………………13
Фрактал (пузыри) Галлея……………………………………………..14
Практическое применение фракталов…………………………………...15
Заключение……………………………………………………………………….19
Список используемой литературы…………………………………………...…20
Введение
Язык науки стремительно меняется в современном мире. История развития физики насчитывает уже не одно столетие. За это время изучено огромное количество разнообразных явлений природы, открыты фундаментальные законы физики, объясняющие различные экспериментальные факты.
Большинство систем в природе сочетают два свойства: во-первых, они очень велики, часто многогранны, многообразны и сложны, а во- вторых они формируются под действием очень небольшого количества простых закономерностей, и далее развиваются, подчиняясь этим простым закономерностям. Это самые разные системы, начиная от кристаллов и просто кластеров (различного рода скоплений, таких как облака, реки, горы, материки, звёзды), заканчивая экосистемами и биологическими объектами (от листа папоротника до человеческого мозга). Фракталы являются как раз такими объектами: с одной стороны — сложные (содержащие бесконечно много элементов), с другой стороны — построенные по очень простым законам. Благодаря этому свойству, фракталы обнаруживают много общего со многими природными объектами. Но фрактал выгодно отличается от природного объекта тем, что фрактал имеет строгое математическое определение и поддаётся строгому описанию и анализу. Поэтому теория фракталов позволяет предсказать скорость роста корневых систем растений, трудозатраты на осушение болот, зависимость массы соломы от высоты побегов и многое другое. Это новое направление в математике, совершившее в научной парадигме переворот, сравнимый по значимости с теорией относительности и квантовой механикой. Объекты фрактальной геометрии по своему внешнему виду резко отличаются от привычных нам 'правильных' геометрических фигур. Фактически, это прорыв в математическом описании систем, которые на протяжении долгого времени такому описанию не поддавались.
Фрактальная геометрия не есть "чистая" геометрическая теория. Это скорее концепция, новый взгляд на хорошо известные вещи, перестройка восприятия, заставляющая исследователя по новому видеть мир.
Целью моей работы является ознакомление с понятием «фрактал» и его разновидностью «алгебраический фрактал».
Понятие фрактала
Сравнительно недавно в математике возник образ объекта, более объемистого, но тем не менее сходного с линией. Некоторым ученым было трудно примириться с понятием линии, не имеющей ширины, поэтому постепенно ими стали изучаться геометрические формы и структуры, имеющие дробную пространственную размерность. На смену непрерывным кривым, обладающим всеми своими производными, пришли ломаные или очень изрезанные кривые. Ярким примером такой кривой является траектория броуновской частицы. Так в науке возникло понятие фрактала.
Фрактал (лат. fractus — дробленый, сломанный, разбитый) — сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком (рис. 1). В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность.
left000Рис. 1 Следует отметить, что слово «фрактал» не является математическим термином и не имеет общепринятого строгого математического определения. Оно может употребляться, когда рассматриваемая фигура обладает какими – либо из перечисленных ниже свойств:
Обладает нетривиальной структурой на всех шкалах. В этом отличие от регулярных фигур (таких, как окружность, эллипс, график гладкой функции): если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину. 
Является самоподобной или приближённо самоподобной. 
Обладает дробной метрической размерностью. 
Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, кровеносная система и система альвеол человека или животных. Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера. 
История появления фракталов
Изучение фракталов на рубеже XIX и XX веков носило скорее эпизодический, нежели систематический характер, потому что раньше математики в основном изучали «хорошие» объекты, которые поддавались исследованию при помощи общих методов и теорий. В 1872 году немецкий математик Карл Вейерштрасс построил пример непрерывной функции, которая нигде не дифференцируема, то есть не имеет касательной ни в одной своей точке. Однако его построение было целиком абстрактно и трудно для восприятия. Поэтому в 1904 году швед Хельге фон Кох придумал такую непрерывную кривую, которая нигде не имеет касательной, причем ее довольно просто нарисовать. Оказалось, что она обладает свойствами фрактала. Один из вариантов этой кривой носит название «снежинка Коха». Идеи самоподобия фигур подхватил француз Поль Пьер Леви, будущий наставник Бенуа Мандельброта. В 1938 году вышла его статья «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому», в которой описан еще один фрактал – С-кривая Леви. Все эти вышеперечисленные фракталы можно условно отнести к одному классу конструктивных (геометрических) фракталов.  Другой класс – динамические (алгебраические) фракталы, к которым относится множество Мандельброта. Первые исследования в этом направлении начались в начале XX века и связаны с именами французских математиков Гастона Жулиа и Пьера Фату. В 1918 году была опубликована работа Жулиа, посвященная итерациям комплексных рациональных функций, в которой описаны множества Жулиа – целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно
Первые идеи фрактальной геометрии возникли в 19 веке. Кантор с помощью простой рекурсивной (повторяющейся) процедуры превратил линию в набор несвязанных точек (так называемая Пыль Кантора). Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками. (Рис. 2)

Рис. 2
Пеано нарисовал особый вид линии.(Рис. 3)
 Рис. 3
Для ее рисования Пеано использовал следующий алгоритм.
На первом шаге он брал прямую линию и заменял ее на 9 отрезков длиной в 3 раза меньшей, чем длина исходной линии (часть 1 и 2 рисунка ). Далее он делал то же самое с каждым отрезком получившейся линии. И так до бесконечности. Уникальность линии в том, что она заполняет всю плоскость. Доказано, что для каждой точки на плоскости можно найти точку, принадлежащую линии Пеано.
Кривая Пеано и пыль Кантора выходили за рамки обычных геометрических объектов. Они не имели четкой размерности. Пыль Кантора строилась вроде бы на основании одномерной прямой, но состояла из точек (размерность 0). А кривая Пеано строилась на основании одномерной линии, а в результате получалась плоскость. Во многих других областях науки появлялись задачи, решение которых приводило к странным результатам, на подобие описанных выше (Броуновское движение, цены на акции).
Вплоть до 20 века шло накопление данных о таких странных объектах, без какой - либо попытки их систематизировать. Так было, пока за них не взялся Бенуа Мандельброт – отец современной фрактальной геометрии и слова фрактал. Постепенно сопоставив факты, он пришел к открытию нового направления в математике – фрактальной геометрии.
Чтобы представить себе фрактал понаглядней рассмотрим пример, приведенный в книге Б.Мандельброта “The Fractal Geometry of Nature” (“Фрактальная геометрия природы”) ставший классическим – “Какова длина берега Британии?”. Ответ на этот вопрос не так прост, как кажется. Все зависит от длины инструмента, которым пользуются. Померив берег с помощью километровой линейки полуают какую-то длину. Однако пропускают много небольших заливчиков и полуостровков, которые по размеру намного меньше измеряемой линейки. Уменьшая размер линейки до 1 метра – получается, что длина берега станет больше. Измеряя длину берега с помощью миллиметровой линейки, учитывая детали, которые больше миллиметра, длина будет еще больше. В итоге ответ на такой, казалось бы, простой вопрос может поставить в тупик кого угодно – длина берега Британии бесконечна.
Алгебраические фракталы
Свое название алгебраические фракталы получили за то, что их строят, на основе алгебраических формул. Методов получения алгебраических фракталов несколько. Один из методов представляет собой многократный расчет функции , где z - комплексное число, а f некая функция. Расчет данной функции продолжается до выполнения определенного условия. И когда это условие выполнится - на экран выводится точка. При этом значения функции для разных точек комплексной плоскости может иметь разное поведение:
•с течением времени стремится к бесконечности;
•стремится к 0;  •принимает несколько фиксированных значений и не выходит за их пределы;  •поведение хаотично, без каких либо тенденций.
3.1 Множество Мандельброта
Множество Мандельброта (один из самых известных фрактальных объектов) впервые было построено (визуально с применением ЭВМ) Бенуа Мандельбротом весной 1980 г. в исследовательском центре фирмы IBM им. Томаса Дж. Уотсона. И хотя исследования подобных объектов начались ещё в прошлом веке, именно открытие этого множества и совершенствование аппаратных средств машинной графики в решающей степени повлияли на развитие фрактальной геометрии и теории хаоса. Итак, что же такое множество Мандельброта.
Рассмотрим функцию комплексного переменного . Положим  и рассмотрим последовательность , где для любого . Такая последовательность может быть ограниченной (т.е. может существовать такое r, что для любого ) либо "убегать в бесконечность" (т.е. для любого r > 0существует ). Множество Мандельброта можно определить как множество комплексных чисел c, для которых указанная последовательность является ограниченной. К сожалению, не известно аналитического выражения, которое позволяло бы по данному c определить, принадлежит ли оно множеству Мандельброта или нет. Поэтому для построения множества используют компьютерный эксперимент: просматривают с некоторым шагом множество точек на комплексной плоскости, для каждой точки проводят определённое число итераций (находят определённое число членов последовательности) и смотрят за её "поведением". (Рис. 4).
Доказано, что множество Мандельброта размещается в круге радиуса r=2 с центром в начале координат. Таким образом, если на некотором шаге модуль очередного члена последовательности превышает 2, можно сразу сделать вывод, что точка, соответствующая c, определяющему данную последовательность, не принадлежит множеству Мандельброта.
Уменьшая шаг, с которым просматриваются комплексные числа, и увеличивая количество итераций, мы можем получать сколь угодно подробные, но всегда лишь приближённые изображения множества.
Пусть в нашем распоряжении имеется N цветов, занумерованных для определённости от 0 до N-1. Будем считать, опять же для определённости, что черный цвет имеет номер 0. Если для данного c после N-1 итераций точка не вышла за круг радиуса 2, будем считать, что c принадлежит множеству Мандельброта, и покрасим эту точку c в чёрный цвет. Иначе, если на некотором шаге k (k Є [1; N-1]) очередная точка вышла за круг радиуса 2 (т.е. на k-ом шаге мы поняли, что она "убегает"), покрасим её в цвет k.
Красивые изображения получаются при удачном выборе палитры и окрестности множества (а именно вне множества мы и получим "цветные точки). (Рис. 5, 6).

Рис. 4

Рис. 5 Рис. 6
3.2 Множество Жюлиа
Множества Жюлиа, тесно связанные с множеством Мандельброта, были исследованы ещё в начале XX века математиками Гастоном Жюлиа и Пьером Фату (см. [1]). В 1917-1919 гг. ими были получены основополагающие результаты, связанные с итерированием функций комплексного переменного. Вообще говоря, этот факт заслуживает отдельного обсуждения и является впечатляющим примером математического исследования, на многие десятилетия опередившего время (учёные могли лишь приблизительно представлять, как выглядят исследуемые ими объекты!), но мы опишем лишь способ построения множеств Жюлиа для функции комплексного переменного . Говоря более точно, мы будем строить т.н. "заполняющие множества Жюлиа".Рассмотрим прямоугольник (x1;y1)-(x2;y2). Зафиксируем константу c и станем просматривать точки выбранного прямоугольника с некоторым шагом. Для каждой точки, как и при построении множества Мандельброта, проведём серию итераций (чем больше число итераций, тем точнее будет получено множество). Если после серии итераций точка не "убежала" за границу круга радиуса 2, поставим её чёрным цветом, иначе цветом из палитры. (Рис. 7, 8, 9, 10).

Рис. 7

Рис.8 Рис. 9

Рис. 10
3.3 Бассейны (фракталы) Ньютона
Еще один тип динамических фракталов составляют фракталы (так называемые бассейны) Ньютона. (Рис. 11). Формулы для их построения основаны на методе решения нелинейных уравнений, который был придуман великим математиком еще в XVII веке. Применяя общую формулу метода Ньютона zn+1 = zn — f (zn)/f'(zn), n=0, 1, 2… для решения уравнения f (x)=0 к многочлену zk-a, получим последовательность точек: zn+1 = (k-1)znk/kznk-1, n=0, 1, 2… Выбирая в качестве начальных приближений различные комплексные числа z0, будем получать последовательности, которые сходятся к корням этого многочлена. Поскольку корней у него ровно k, то вся плоскость разбивается на k частей — областей притяжения корней. Границы этих частей имеют фрактальную структуру.
Рис. 11
3.4 Фрактал (пузыри) Галлея
Такие фракталы получаются, если в качестве правила для построения динамического фрактала использовать формулу Галлея для поиска приближенных значений корней функции. (Рис. 12). 
Метод состоит из последовательности итераций:

Идея метода почти та же, что используется для рисования динамических фракталов: берем какое-нибудь начальное значение (как обычно, здесь речь идет о комплексных значениях переменных и функций) и применяем к нему много раз формулу, получая последовательность чисел. Почти всегда она сходится к одному из нулей функции (то есть значению переменной, при котором функция принимает значение 0). Метод Галлея, несмотря на громоздкость формулы, работает эффективнее метода Ньютона: последовательность сходится к нулю функции быстрее.

Рис. 12
Практическое применение фракталов
Фракталы находят всё большее применение в науке. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Вот несколько примеров.
Компьютерные системы
Cреди всех картинок, которые может создавать компьютер, лишь немногие могут поспорить с фрактальными изображениями, когда идет речь о подлинной красоте.
Наиболее полезным использованием фракталов в компьютерной науке является фрактальное сжатие данных. В основе этого вида сжатия лежит тот факт, что реальный мир хорошо описывается фрактальной геометрией. При этом, картинки сжимаются гораздо лучше, чем это делается обычными методами(такими как jpeg или gif). Другое преимущество фрактального сжатия в том, что при увеличении картинки, не наблюдается эффекта пикселизации (увеличения размеров точек до размеров, искажающих изображение). При фрактальном же сжатии, после увеличения, картинка часто выглядит даже лучше, чем до него. left000 
Механика жидкостей
Изучение турбулентности в потоках очень хорошо подстраивается подфракталы. Турбулентные потоки хаотичны и поэтому их сложно точно смоделировать. И здесь помогает переход к фрактальному представлению, что сильно облегчает работу инженерам и физикам, позволяя им лучше понять динамику сложных потоков.
При помощи фракталов также можно смоделировать языки пламени.
Пористые материалы хорошо представляются во фрактальной форме в связи с тем, что они имеют очень сложную геометрию. Это используется в нефтяной науке.
Телекоммуникации
Для передачи данных на расстоянии используются антенны, имеющие
фрактальные формы, что сильно уменьшает их размеры и вес. Фракталы используются для описания кривизны поверхностей. Неровная поверхность характеризуется комбинацией из двух разных фракталов.  Медицина
Биосенсорные взаимодействия. Биение сердца.  Биология
Моделирование хаотических процессов, в частности при описании моделей популяции. НанотехнологииВ случае нанотехнологии фракталы тоже играют важную роль, поскольку из-за своей иерархической самоорганизации многие наносистемы обладают нецелочисленной размерностью, то есть являются по своей геометрической, физико-химической или функциональной природе фракталами. Например, ярким примером химических фрактальных систем являются молекулы «дендримеров». (Рис. 13)  Рис. 13
Литература
Среди литературных произведений находят такие, которые обладают текстуальной, структурной или семантической фрактальной природой. В текстовых фракталах потенциально бесконечно повторяются элементы текста («У попа была собака…», «Притча о философе, которому снится, что он бабочка, которой снится, что она философ, которому снится…» и тексты с наращениями («Дом, который построил Джек»)В структурных фракталах схема текста потенциально фрактальна: венок сонетов (15 стихотворений), венок венков сонетов (211 стихотворений), венок венков венков сонетов (2455 стихотворений).


Заключение
Фрактал - объект, обладающий бесконечной сложностью, позволяющий рассмотреть столько же своих деталей вблизи, как и издалека. Земля -классический пример фрактального объекта. Из космоса она выглядит как шаp. Если приближаться к ней, мы обнаружим океаны, континенты, побережья и цепи гор. Будем рассматривать горы ближе - станут видны еще более мелкие детали: кусочек земли на поверхности горы в своем масштабе столь же сложный и неровный, как сама гора. И даже еще более сильное увеличение покажет крошечные частички грунта, каждая из которых сама является фрактальным объектом.
В заключении хочется сказать, что после того как были открыты фракталы, для многих учёных стало очевидно, что старые, добрые формы евклидовой геометрии сильно проигрывают большинству природных объектов из-за отсутствия в них некоторой нерегулярности, беспорядка и непредсказуемости. Возможно, что новые идеи фрактальной геометрии помогут изучить многие загадочные явления окружающей природы. В настоящие время фракталы стремительно вторгаются во многие области физики, биологии, медицины, социологии, экономики. Методы обработки изображений и распознавания образов, использующие новые понятия, дают возможность исследователям применить этот математический аппарат для количественного описания огромного количества природных объектов и структур.

Список используемой литературы
1.     Bведение во фракталы, http://fractals.narod.ru/intro.htm2.     Жиков В. В. О множествах Жюлиа. // Современное естествознание: Энциклопедия: В 10 т. Т.1: Математика. Механика. М., 2000.
3.     Жиков В. В. Фракталы. // Современное естествознание: Энциклопедия: В 10 т. Т.1: Математика. Механика. М., 2000.
4.     Мандельброт Б. Фрактальная геометрия природы. – М: Институт компьютерных исследований, 2002.
5.  Морозов А.Д. Введение в теорию фракталов.—Москва-Ижевск: Институт компьютерных исследований, 2002, 160стр.
6. Динамические (алгебраические) фракталы // Элементы. [2015—2015]. URL: http:// elementy.ru/posters/fractals/dynamic
7. Динамические (алгебраические) фракталы // Элементы. [2015—2015]. URL: http:// elementy.ru/posters/fractals/Mandelbrot#nop 8. Алгебраические фракталы // Фракталы. [2015—2015]. URL:http://rusproject.narod.ru/article/fractals.htm


Приложенные файлы


Добавить комментарий