Рабочая программа по математике 6 класс ФГОС. Программа разработана на основе программы общеобразовательных учреждений по математике, 6 класс — М.Просвещение, 2011г.


РОСТОВСКАЯ ОБЛАСТЬ Г. БЕЛАЯ КАЛИТВА
МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕСРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 17
«Утверждаю»
Директор МБОУ СОШ №17
Приказ от _____________________
______________ /_______________
РАБОЧАЯ ПРОГРАММА
по математике,
основное общее образование, 6класс
Количество часов 170
Учитель Спасских Ольга Леонидовна
Программа разработана на основе программы общеобразовательных учреждений по математике, 6 класс - М.Просвещение, 2011г.
Планируемые результаты освоения учебного предмета.
Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:
личностные:
ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;
умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;
креативности мышления, инициативы, находчивости, активности при решении арифметических задач;
умения контролировать процесс и результат учебной математической деятельности;
формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
метапредметные:
способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
умения осуществлять контроль по образцу и вносить необходимые коррективы;
способности адекватно оценивать правильность или Ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
умения создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
формирования учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентностй);
8)первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;
развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;
умения находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;
понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;
умения самостоятельно ставить цели, выбирать и создавать алгоритмы для рещения учебных математических проблем;
способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
предметные:
1) умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;
владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования представлений о статистических закономерностях в реальном мире и различных способах их изучения;умения выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
умения пользоваться изученными математическими формулами;
знания основных способов представления и анализа статистических данных; умения решать задачи с помощью перебора всех возможных вариантов;
умения применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.
Содержание учебного предмета
1. Повторение курса математики 5 класс
Дроби. Арифметические действия дробями. Решение уравнений. Проценты. Решение задач.
2. Делимость чисел
Делители и кратные числа. Общий делитель и общее кратное. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители.
 Основная цель – завершить изучение натуральных чисел, подготовить основу для освоения действий с обыкновенными дробями.
3.Сложение и вычитание дробей с разными знаменателями
Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Понятие о наименьшем общем знаменателе нескольких дробей. Сравнение дробей. Сложение и вычитание дробей. Решение текстовых задач.
Основная цель – выработать прочные навыки преобразования дробей, сложения и вычитания дробей.
4. Умножение и деление обыкновенных дробей
Умножение и деление обыкновенных дробей. Основные задачи на дроби.
Основная цель – выработать прочные навыки арифметических действий с обыкновенными дробями и решения основных задач на дроби
5. Отношения и пропорции
Пропорция. Основное свойство пропорции. Решение задач с помощью пропорции. Понятие о прямой и обратной пропорциональности величин. Задачи на пропорции. Масштаб. Формулы длины окружности и площади круга. Шар.
Основная цель – сформировать понятия пропорции, прямой и обратной пропорциональности величин.
6. Положительные и отрицательные числа
Положительные и отрицательные числа. Противоположные числа. Модуль числа и его геометрический смысл. Сравнение чисел. Целые числа. Изображение чисел на координатной прямой. Координата точки.
Основная цель – расширить представления учащихся о числе путем введения отрицательных чисел.
 
7. Сложение и вычитание положительных и отрицательных чисел
Сложение и вычитание положительных и отрицательных чисел.
Основная цель – выработать прочные навыки сложения и вычитания положительных и отрицательных чисел.
8. Умножение и деление положительных и отрицательных чисел
Умножение десятичных положительных и отрицательных чисел. Понятие о рациональном числе. Десятичное приближение обыкновенной дроби. Применение законов арифметических действийдля рационализации вычислений.
Основная цель – выработать прочные навыки арифметических действий с положительными и отрицательными числами.
9. Решение уравнений
Простейшие преобразования выражений: раскрытие скобок, приведение подобных слагаемых. Решение линейных уравнений. Примеры решения текстовых задач с помощью линейных уравнений.
Основная цель – подготовить учащихся к выполнению преобразований выражений, решению уравнений.
10. Координаты на плоскости
Построение перпендикуляра к прямой и параллельных прямых с помощью чертежного треугольника и линейки. Прямоугольная система координат на плоскости, абсцисса и ордината точки. Примеры графиков и диаграмм.
Основная цель – познакомить учащихся с прямоугольной системой координат на плоскости.
11. Повторение. Решение задач.
Систематизация, обобщение курса «Математика, 6 класс »
ТРЕБОВАНИЯ К МАТЕМАТИЧЕСКОЙ ПОДГОТОВКЕ УЧАЩИХСЯ
В результате изучения курса математики 6 класса учащиеся должны знать / понимать:
как потребности практики привели математическую науку к необходимости расширения понятия числа;
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
уметь:
выполнять сложение и вычитание обыкновенных дробей с одинаковыми знаменателями;
находить значение числовых выражений;
пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицычерез более мелкие и наоборот;
составлять и решать пропорции, решать основные задачи на дроби, проценты;
решать линейные уравнения с одной переменной;
изображать числа точками на координатной прямой;
решать текстовые задачи;
пользоваться языком математики для описания предметов окружающего мира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры, выполнять чертежи по условию задач;
построить координатные оси, отметить точку по заданным координатам, определить координаты точки, отмеченной на координатной плоскости;
находить в простейших случаях значения функций, заданных формулой, таблицей, графиком;
интерпретировать в несложных случаях графики реальных зависимостей между величинами, отвечая на поставленные вопросы;
проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
для решения несложных практических задач, в том числе с использованием справочных материалов, калькулятора, компьютера;
устной прикидки и оценки результатов вычислений; проверки результатов вычислений с использованием различных приемов;
описания реальных ситуаций на языке геометрии;
решения практических задач, связанных с нахождением геометрических величин;
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир);
решения практических задач в повседневной деятельности с использованием действий с числами, процентов, длин, площадей, объемов.
Критерии и нормы оценки знаний, умений и навыков обучающихся по математике
- Содержание и объем материала, подлежащего проверке, определяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях.
- Основными формами проверки знаний и умений, учащихся по математике являются письменная контрольная работа и устный опрос.
- Среди погрешностей выделяются ошибки и недочеты.
Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел основными знаниями, умениями, указанными в программе.
К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, которые в программе не считаются основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения: неаккуратная запись, небрежное выполнение чертежа.
- Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.
Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты и обоснованные выводы, а его изложение и письменная запись математически грамотны и отличаются последовательностью и аккуратностью.
Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно, выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение.
- Оценка ответа учащихся при устном и письменном опросе производится по пятибалльной системе.
- Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии учащегося, за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им задания.
- Итоговые отметки (за тему, четверть, курс) выставляются по состоянию знаний на конец этапа обучения с учетом текущих отметок.
Оценка устных ответов учащихся.
Ответ оценивается отметкой «5», если ученик:
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость использованных при ответе умений и навыков;
отвечал самостоятельно без наводящих вопросов учителя.
Возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.
Ответ оценивается отметкой «4», если он удовлетворен в основном требованиям на отметку «5», но при этом имеет один из недостатков:
в изложении допущены небольшие пробелы, не исказившие математического содержания ответа, исправленные по замечанию учителя.
допущены ошибки или более двух недочетов при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.
Отметка «3» ставится в следующих случаях:
неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»).
имелись затруднения или допущены ошибки в определении понятий и, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
при знании теоретического материала выявлена недостаточная сформированность умений и навыков.
Отметка «2» ставится в следующих случаях:
не раскрыто основное содержание учебного материала;
обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя. ……………………………………………………………
Оценка «1» ставится в случае, если:
ученик обнаружил полное незнание и непонимание изучаемого материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.
Оценка письменных контрольных работ учащихся.
Отметка «5» ставится в следующих случаях:
работа выполнена полностью.
в логических рассуждениях и обоснованиях нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала);
Отметка «4» ставится, если:
работа выполнена полностью, но обоснования шагов решения недостаточны (если умения обосновывать рассуждения не являлись специальным объектом проверки);
допущена одна ошибка или два-три недочета в выкладках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки);
Отметка «3» ставится, если:
допущены более одной ошибки или более двух- трех недочетов в выкладках, чертежах или графика, но учащийся владеет обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
допущены существенные ошибки, показавшие, что учащийся не владеет обязательными знаниями по данной теме в полной мере.
Отметка «1» ставится, если:
работа показала полное отсутствие у учащегося обязательных знаний, умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
Тематическое планирование
Глава Количество часов Контрольная работа
1
Повторение изученного в 5 классе 4 Диагностическая контрольная работа
2 Делимость чисел 20 № 1
3 Сложение и вычитание дробей с разными знаменателями 28 № 2,3
4 Умножение и деление обыкновенных дробей 31 № 4,5,6
5 Отношения и пропорции 18 № 7, 8
6 Положительные и отрицательные числа 13 № 9
7 Сложение и вычитание положительных и отрицательных чисел 11 № 10
8 Умножение и деление положительных и отрицательных чисел 12 № 11
9 Решение уравнений 13 № 12, 13
10 Координаты на плоскости 13 № 14
11 Итоговое повторение курса математики 6 класса 12 Итоговая контрольная работа
Всего 170 СОГЛАСОВАНО
Протокол заседания
методического консилиума
МБОУ СОШ №17
от 26 августа 2016 года №1
________ / Е.А. Перлова/
СОГЛАСОВАНО Заместитель директора по УВР __________/С.В. Елисеева/
26 августа 2016 года

Приложенные файлы


Добавить комментарий