Конспект урока «Формула суммы n — первых членов арифметической прогрессии» (Алгебра, 9 класс)


9 алгебра. Урок 58 01.02.17
ТЕМА: «Формула суммы n - первых членов арифметической прогрессии»
Цели: вывести формулу суммы первых п членов арифметической прогрессии; формировать умение применять эту формулу при решении задач.
Ход урока
I. Организационный момент.
II. Актуализация знаний.
У с т н о:
1. Сформулируйте определение арифметической прогрессии.
2. Приведите пример арифметической прогрессии.
3. Сформулируйте определение разности арифметической прогрессии.
4. Назовите формулу п-го члена арифметической прогрессии.
П и с ь м е н н о:
В а р и а н т 1.
№ 578 (а). В а р и а н т 2.
№ 578 (б).

III. Объяснение нового материала.
1. Создание проблемной ситуации.
З а д а ч а. Ученик мастера изготовил в первую неделю работы 15 гончарных изделий, а в каждую следующую неделю изготовлял на 5 изделий больше, чем в предыдущую. Сколько изделий ученик изготовил за восьмую неделю? Сколько изделий ученик изготовил всего в течение десяти недель?
Ответ на первый вопрос ученики знают, как получить, такие задачи решались ими на прошлых занятиях. Количество изготовленных изделий в первую, вторую и т. д. недели можно обозначить а1, а2,… ап, …, причем (ап) – арифметическая прогрессия с разностью d = 5 и первым членом а1 = 15. За восьмую неделю ученик изготовил гончарных изделий:
а8 = 15 + 5 (8 – 1) = 50.
Для ответа на второй вопрос ученики могут предложить только такой способ решения: подсчитать количество изделий, выполненных за 2-ю, 3-ю, …, 10-ю неделю, и сложить. Это очень долго. А если в задаче нужно будет найти сумму ста членов арифметической прогрессии, тысячи? Возникает проблема – нужна общая формула.
2. Пример из истории математики.
С формулой суммы п первых членов арифметической прогрессии связан эпизод из жизни немецкого математика Карла Гаусса (1777–1855). Маленькому Карлу было 9 лет, когда учитель, занятый проверкой работ учеников, предложил классу сложить все натуральные числа от 1 до 100, рассчитывая надолго занять детей. Каково же было удивление преподавателя, когда через несколько минут Гаусс подошел к нему с верным ответом! Он подошел к решению творчески, заметив, что можно складывать числа не подряд, а парами: 1 + 100, 2 + 99, 3 + 98 … и т. д. Легко увидеть, что сумма чисел в каждой паре равна 101, а таких пар 50, значит общая сумма равна 101 · 50 = 5050.
А можно ли с помощью рассуждений, аналогичных тем, что проводил маленький Гаусс, найти сумму первых п членов любой арифметической прогрессии?
3. Вывод формулы.
Пусть (ап) – арифметическая прогрессия.
Обозначим Sn сумму п первых членов арифметической прогрессии.
Sn = а1 + а2 + а3 + а4 + … + ап – 1 + ап(1)
Sn = ап + ап – 1 + ап – 2 + ап – 3 + … + а2 + а1(2)
Докажем, что сумма каждой пары членов прогрессии, расположенных друг под другом, равна а1 + ап.
a2 + an – 1 = (a1 + d) + (an – d) = a1 + an;
a3 + an – 2 = (a2 + d) + (an – 1 – d) = a2 + an – 1 = a1 + an;
a4 + an – 3 = (a3 + d) + (an – 2 – d) = a3 + an – 2 = a1 + an и т. д.
Число таких пар равно п. Складываем почленно (1) и (2) и получаем
2Sn = (a1 + an) · n.
– формула суммы п первых членов
арифметической прогрессии.
Обычно арифметическая прогрессия задается первым членом и разностью, поэтому удобно иметь еще формулу суммы п первых членов, выраженную через а1 и d арифметической прогрессии.
Sn = · n, ап = а1 + d (п – 1);
Sn = · n;
– формула суммы п первых членов
арифметической прогрессии.
4. Пример.
Вернемся к задаче про ученика мастера. В течение 10 недель ученик мастера изготовил
S10 = · 10 = 375 изделий.
IV. Формирование умений и навыков.
Так как формул суммы п первых членов арифметической прогрессии две, то необходимо сперва выяснить, в заданиях какого вида лучше использовать каждую из них, а затем при решении упражнений анализировать условие и выбирать формулу.
Упражнения:
1) Найти сумму первых тридцати членов арифметической прогрессии 4; 5,5; …
Р е ш е н и е
а1 = 4, d = 1,5, значит, по формуле II:
а30 = · 30 = 772,5.
2) Найти сумму первых сорока членов последовательности (ап), заданной формулой ап = 5 · п – 4.
Последовательность (ап) задана формулой вида ап = kn + b, где k = 5 и b = –4, значит, (ап) – арифметическая прогрессия. Если применять формулу II, то для этого сперва надо найти а1, а2 , затем d как разность а1 – а2. Это неудобно, проще сразу найти а1, а40 и подставить в формулу I.
а1 = 5 · 1 – 4 = 1; а4 = 5 · 40 – 4 = 196;
S40 = = 3940.
3) № 603.

№ 604. На «прямое» применение формул I и II. Самостоятельное решение с последующей проверкой.

№ 606.

№ 608 (а). У доски с объяснением. Здесь необходимо «увидеть», что последовательность слагаемых – арифметическая прогрессия, где а1 = 2, d = 2 и количество слагаемых равно п, можно применить формулу II. А можно задать эту прогрессию формулой ап = 2п и применить формулу I.

V. Итоги урока.
В о п р о с ы у ч а щ и м с я:
– Назовите формулу суммы первых п членов арифметической прогрессии (2 вида).
– В каких случаях удобнее применять формулу I, II?
Домашнее задание: № 605, № 607, № 608 (б), № 621 (а).




Приложенные файлы


Добавить комментарий